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Abstract

Background: Currently, magnetic resonance imaging (MRI) is used to evaluate active inflammatory sacroiliitis
related to axial spondyloarthritis (axSpA). The qualitative and semiquantitative diagnosis performed by expert
radiologists and rheumatologists remains subject to significant intrapersonal and interpersonal variation. This
encouraged us to use machine-learning methods for this task.

Methods: In this retrospective study including 56 sacroiliac joint MRI exams, 24 patients had positive and 32 had
negative findings for inflammatory sacroiliitis according to the ASAS group criteria. The dataset was randomly split
with ~ 80% (46 samples, 20 positive and 26 negative) as training and ~ 20% as external test (10 samples, 4 positive
and 6 negative). After manual segmentation of the images by a musculoskeletal radiologist, multiple features were
extracted. The classifiers used were the Support Vector Machine, the Multilayer Perceptron (MLP), and the Instance-
Based Algorithm, combined with the Relief and Wrapper methods for feature selection.

Results: Based on 10-fold cross-validation using the training dataset, the MLP classifier obtained the best performance
with sensitivity = 100%, specificity = 95.6% and accuracy = 84.7%, using 6 features selected by the Wrapper method.
Using the test dataset (external validation) the same MLP classifier obtained sensitivity = 100%, specificity = 66.7% and
accuracy = 80%.

Conclusions: Our results show the potential of machine learning methods to identify SIJ subchondral bone marrow
edema in axSpA patients and are promising to aid in the detection of active inflammatory sacroiliitis on MRI STIR
sequences. Multilayer Perceptron (MLP) achieved the best results.
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Introduction
The term spondyloarthritis (SpA) encompasses a group
of diseases characterized by inflammation in the spine
and in the peripheral joints, as well as other clinical fea-
tures. The current concept of the spectrum of SpA com-
prises axial spondyloarthritis (axSpA) and peripheral
spondyloarthritis. In recent years, there has been tre-
mendous progress in understanding the natural history
and pathogenetic mechanisms underlying SpA, leading
to the development of effective treatments. It has be-
come imperative to identify the disease early and accur-
ately, to offer patients effective treatment in a safe
manner [1]. SpA usually starts in the young adult age.
Its progression frequently contributes to significant
physical disability and decreased quality of life if early
diagnosis and early treatment are not achieved. This
group of diseases presents with high prevalence and inci-
dence in early age causing great socioeconomic impact,
because of both the associated clinical characteristics
and treatment [2].
AxSpA involves primarily the entheses of the sacroiliac

joints (SIJs) and the spine, which are the most frequently
compromised anatomic regions due to this disease. The
SIJs are considered to be the most important sites of im-
pairment and magnetic resonance imaging (MRI) is rec-
ognized as the most sensitive technique for early
diagnosis of inflammatory sacroiliitis due to its great tex-
tural contrast resolution, by revealing subchondral bone
marrow edema [3].
The Assessment of SpondyloArthritis International So-

ciety (ASAS) group recommends T2-weighted MRI se-
quence sensitive for free water, such as short tau
inversion recovery (STIR) or T2 fat saturation (fat-sat),
to detect SIJ active inflammation [3]. The MRI charac-
teristics of SIJ related to active inflammation include
high-intensity gray levels close to the joint surface, in
the subchondral bone, and the depth of that intensity.
Figure 1 shows examples of a positive and a negative
case for active inflammatory sacroiliitis.

Despite efforts to standardize the evaluation, the quali-
tative and semiquantitative diagnosis performed by ex-
pert radiologists and rheumatologists still remains
subject to significant intrapersonal and interpersonal
variation [4]. Therefore, this is an important field for po-
tential application of computer-assisted methods using
artificial intelligence or machine learning techniques to
achieve reliable and early diagnosis.
Machine learning is a branch of artificial intelligence,

which allows the extraction of meaningful patterns from
examples [5, 6]. The artificial intelligence approach has
been widely used in medical image classification tasks,
such as melanoma [7], discrimination of smoking status
based on deep learning with MRI [8], classification of der-
matological ulcers [9], evaluation of breast cancer [10],
lung diseases [11, 12], and vertebral compression fractures
[13, 14]. Computer-assisted analysis can be based on dif-
ferent approaches, such as statistical methods, instance-
based analysis, decision trees, and artificial neural net-
works (ANNs). However, machine-learning models could
have some limitations, for instance, bias to the majority
class with imbalanced datasets and overfitting due to high
feature-vector dimensionality. Therefore, it is required to
evaluate the performance of machine learning techniques
for each specific application.
In this context, our proposal was to evaluate the ap-

plicability of classical machine learning models and fea-
ture selection methods for the classification of active
inflammatory sacroiliitis in magnetic resonance images.

Material and methods
This retrospective study was approved by the Institu-
tional Review Board (IRB) at the University Hospital.
IRB waived the requirement to obtain informed consent
of patients.

Image acquisition and preprocessing
Images from SIJ MRI exams of 56 patients were retro-
spectively recovered from the Picture Archiving and

Fig. 1 a. Negative case for active inflammatory sacroiliitis on MRI illustrated with one of its coronal STIR images. There are no hyperintense foci at
the subchondral bone adjacent to the articular surfaces (white arrowheads). b. A positive example of bone marrow edema related to active
sacroiliitis on MRI. The subchondral bone marrow edema is characterized by ill-defined foci of hyperintensity and is shown inside the dotted
white circle. White arrowheads indicate the right sacroiliac joint surface
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Communication System (PACS) of the University Hos-
pital. Exams were acquired with a 1.5 T scanner
(Achieva, Philips Medical Systems), using the spine coil,
with the acquisition of coronal STIR sequences. From
each MRI exam, a musculoskeletal radiologist selected
six images as being the most representative images of
the SIJs of the patient, resulting in a total of 336 images.
Patients whose MRIs were included in this study were

all initially investigated for suspected inflammatory
sacroiliitis. Some of them finally had the diagnosis of
spondyloarthritis, and others did not. At the end of 2
years of follow-up, all patients in the positive group (SIJ
active inflammation) were diagnosed with spondyloar-
thritis according to clinical and laboratory criteria. In
the negative group (SIJ without active inflammation),
half of the patients (13 individuals) did not meet the
clinical and laboratorial criteria for spondyloarthritis,
and received other diagnosis, such as osteoarthritis,
fibromyalgia, gout, or psychiatric disorder. The other
half of patients in the negative group, despite having the
final diagnosis of spondyloarthritis during follow-up, did
not present active inflammation at the time of the MRI
examination.
All images were anonymized and manually segmented

by the same musculoskeletal radiologist. The segmenta-
tion was performed using Adobe Photoshop CC version
14.1 × 64. Two musculoskeletal radiologists classified, in
consensus, each MRI exam as positive or negative for ac-
tive inflammation. One of the radiologists had, at the
time of this study, 2 years of experience after a clinical
fellowship in musculoskeletal radiology, and the other
was a senior radiologist with 18 years of clinical experi-
ence. MRI exams were categorized by the radiologists as
a positive or a negative test for inflammatory sacroiliitis
for each patient according to the ASAS criteria [3]. The
MRI criteria used to define positivity of SIJ inflammation
correspond to foci of subchondral edema seen at two

different sites or at the same site in at least two consecu-
tive images [3].
The radiologists’ classification defined 24 patients as

positive and 32 as negative for inflammatory sacroiliitis,
and this classification was used as the reference standard
to calculate sensitivity, specificity, and the area under
the receiver operating characteristic curve (AUC). The
dataset was randomly split with ~ 80% (46 samples, 20
positive and 26 negative) for training and ~ 20% for ex-
ternal test (10 samples, 4 positive and 6 negative).
Each original image has the spatial resolution of 256 ×

256 pixels and contrast resolution of 256 Gy levels. The
SIJ region of interest (ROI) was placed on a black back-
ground during the process of manual segmentation.
However, this background could cause noise and arti-
facts in the feature extraction step (described in Section
2.2), such as high frequencies present in the transition
between the ROI and the background. To minimize
high-frequency noise, a preprocessing method based on
the warp perspective transform, including a polynomial
transformation [15], was used to expand the ROI and
cover all of the background (Fig. 2).

Feature extraction and selection
Statistical analysis was performed based on features ex-
tracted from the histograms of the preprocessed ROIs
with 256 bins. The features derived included the Mean,
Variance, Standard Deviation, Kurtosis, Coefficient of
Variation, Skewness, and Maximum Pixel Value.
Texture analysis was based on the features proposed

by Haralick et al. [16] using the gray-level cooccurrence
matrix, and the features proposed by Tamura et al. [17]
extracted from image gray levels. Haralick’s features
were calculated using a cooccurrence matrix with dis-
tance 1 and are listed as follows: Second Angular Mo-
mentum, Contrast, Correlation, Variance, Moment of
Inverse Difference, Mean Sum, Sum Entropy, Sum of

Fig. 2 a MRI slice selected. b ROI manually segmented and placed on a black background. c ROI after the warp transform
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Variance, Difference of Variance, Difference of Entropy,
two Measures of Information Correlation, and Max-
imum Correlation Coefficient. Tamura’s features were
Contrast, Granularity, and Directionality, computed in
16 directions, for a total of 18 features. All of these fea-
tures were computed using the open-source Java library
JFeatureLib [18].
The fast Fourier transform (FFT) was applied to the

warped images to obtain the power spectrum using the
open-source library ImageJ [19]. The attributes extracted
from the two-dimensional rectangular power spectrum
were called Fourier features, which include the Mean,
Variance, Standard Deviation, Asymmetry, Kurtosis, Co-
efficient of Variation, and Maximum Pixel Value. The
statistics of the power spectrum summarize the fre-
quency intensities, which may be a simple and intuitive
way to discriminate instances using frequency features.
The Haar wavelet transform [20] was applied to de-

compose each image into subimages to obtain the en-
ergy in the low-frequency band (LL) and high-frequency
bands (HH, HL, LH) in levels 2 and 3. The Haar wavelet
is defined as a noncontinuous function and its applica-
tion to an image results in subimages with vertical, hori-
zontal, and diagonal details from the original image. The
energy of each subimage was defined as the sum of all
pixel values. The Haar wavelet was implemented using
the Fractional Wavelet Module in ImageJ [19].
Gabor filters were applied to each image to obtain the

energy in each frequency band, capturing local frequency
features [21] in five scales and six orientations. Gabor fil-
ters are defined as continuous functions that can detect
features in various directions, but have an implicit as-
sumption that all of the images are captured in the same
orientation. For each filter output, the mean and stand-
ard deviation were calculated, resulting in 60 Gabor fea-
tures. Gabor filters were implemented using the open-
source Java library JFeatureLib [18].
The estimation of fractal dimension was implemented

using the box counting method. This approach uses boxes
of different sizes and counts the number of occurrences of
a specified pattern in the image. Square boxes with width
from 6 to 24 pixels were used; boxes with inside pixel
values of 50, 100, 150, and 200 were counted; and the
mean values of such counts were obtained. The fractal di-
mension was then estimated as the slope of the line when
the logarithm of the mean number of boxes is plotted on
the Y axis against the size of the boxes on the X axis. The
fractal dimension estimation results in one feature.
The final feature vector for each patient was created

using the mean and standard deviation of each fea-
ture across the six warped MRI ROIs, because the in-
flammatory pattern may not be presented in all
images of a given exam. This resulted in a 230-
dimension feature vector for each patient’s MRI exam.

Before classification, all features were normalized to
the interval [0,1].
The large dimension of the feature vector defined as

above may result in poor performance by the classifiers
used in machine learning, a problem known as the curse
of dimensionality; therefore, we used two feature selec-
tion methods to remove irrelevant or redundant features
and reduce the vector dimensionality: ReliefF and Wrap-
per. The ReliefF method assigns a probability of rele-
vance to each feature based on its individual values
between multiple nearest instances [22]. The ReliefF al-
gorithm used in this work was implemented with the
Weka machine learning platform [23] using 10 nearest
neighbors and a search method based on the Ranker al-
gorithm. The Ranker algorithm sorts the feature list
from the highest probability to the lowest.
The Wrapper method uses a learning scheme to select

features. The idea behind the Wrapper method is to run
the chosen classifier with subsets of the feature vector,
evaluate the classifier, and choose the feature set with
the highest performance [24]. The classifiers used to se-
lect features in this work are the Support Vector Ma-
chine (SVM), the Multilayer Perceptron (MLP), and the
Instance-Based Algorithm (IBA), which will be explained
in Section 2.3. The methods were trained and validated
using 10-fold cross-validation and the training dataset
(46 samples). A feature was considered to be relevant in
the training step if it appeared as relevant in at least two
folds. The trained model with the best performance was
then tested (external validation) using the test dataset
(10 samples). Figure 3 shows a flowchart representation
of the experiments carried out.

Machine learning
Three machine learning models were used to evaluate
the capability of the features to classify SIJ cases.
The SVM is a method that uses hyperplanes to separate

the samples provided in an optimal way, such that the
margin of separation between the classes (Positive and
Negative) will be the maximum possible. The method
transforms a multisolution problem to a problem with a
unique solution [25]. The equations used to create the hy-
perplanes were specified to be linear in this work.
IBAs derived from k-nearest neighbors (kNN), referred

to as IBk, support robust learning with noisy data, storage
reduction during the learning process, and are intuitive
[26]. The k values used in this work were 1, 3, and 5.
The MLP is a fully connected ANN which uses

backpropagation as the learning scheme. It is a robust
model which adjusts synaptic weights according to
the error gradient calculated from each training epoch
[27]. The MLP model used in this work has the
learning rate of 0.3, momentum of 0.2, 500 epochs,
and one hidden layer with 231 neurons. The
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classifiers were implemented using the open-source li-
brary Weka [23].

Results
Initial evaluation of the methods was performed using
the training dataset and features ranked by ReliefF
and Wrapper, which means that we classified the im-
ages using N features for each evaluation, where
0 < N < 231. The results are presented in Figs. 4, 5
and 6 for AUC, sensitivity (true-positive rate), and
specificity (true-negative rate), respectively. Table 1

summarizes the best performance of each classifier.
Table 2 shows the classification performance using
each of the feature vectors selected by the wrapper
method for each classifier. Table 3 shows the MLP
classifier’s best performance using six features selected
by the Wrapper method for the training dataset (10-
fold cross-validation, 46 samples) and for the test
dataset (external validation, 10 samples).
MLP obtained the best results when all patients cate-

gorized as positive for SIJ active inflammation were cor-
rectly identified (sensitivity = 1). Of the 26 negative

Fig. 3 Schematic representation of the experiments carried out

Fig. 4 AUC obtained with different numbers of features for the various classifiers studied to classify negative and positive active inflammatory
sacroiliitis on MRI using the training dataset. SVM = Support Vector Machine; MLP =Multilayer Perceptron; Instance-Based Algorithm (IBA) derived
from k-nearest neighbors (IBk) (k = 1, k = 3, k = 5)
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Fig. 5 Sensitivity obtained with different numbers of features for the various classifiers studied to classify negative and positive active inflammatory
sacroiliitis on MRI using the training dataset. SVM = Support Vector Machine; MLP =Multilayer Perceptron; Instance-Based Algorithm (IBA) derived from
k-nearest neighbors (IBk) (k = 1, k = 3, k = 5)

Fig. 6 Specificity obtained with different numbers of features for the various classifiers studied to classify negative and positive active inflammatory
sacroiliitis on MRI using the training dataset. SVM = Support Vector Machine; MLP =Multilayer Perceptron; Instance-Based Algorithm (IBA) derived from
k-nearest neighbors (IBk) (k = 1, k = 3, k = 5)
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cases, only 2 cases were erroneously classified by the al-
gorithm as positive (specificity = 0.923). Therefore, the
final agreement between the radiologists and the algo-
rithm reached 95.6% (Accuracy) in this scenario.

Discussion
Recent literature dedicated to musculoskeletal radiology
shows increasing interest in the application of machine
learning and other computer techniques, for example, in
the analysis of benign and malignant vertebral compres-
sion fractures [28], skeletal maturity [29], and differenti-
ation between benign and malignant cartilaginous bone
tumors [30]. However, to our best knowledge, there is
no previous study dedicated to SpA SIJ inflammation.
Our study examined the use of machine learning

models to aid in the classification of MRI of SIJs as posi-
tive or negative for active inflammation. The visual diag-
nosis of sacroiliitis in clinical practice consists of the

detection of changes in the gray levels in the tissues
close to the SIJ surfaces by a medical specialist, with
high signal intensity of subchondral bone indicating ac-
tive inflammation. Based on this and related observa-
tions, we performed statistical, textural, spectral, and
fractal analyses to extract features and characterize SIJs
for classification.
In general, classifiers provided their best performance

with low-dimension feature vectors obtained using
ReliefF or Wrapper methods.
ReliefF provides a classifier-independent list of relevant

features. Table 1 shows that kNN with k = 3 reached the
highest AUC using only 5 features selected by ReliefF.
These five features are the mean of the energy of Haar
wavelet for LH on level 2, mean of the maximum value
of pixel, standard deviation of the energy of Haar wave-
let for HH on level 2, standard deviation for the max-
imum value of pixel, and standard deviation of the
energy of Haar wavelet for LH on level 2.
The high-frequency filters detect abrupt transitions be-

tween gray levels. As shown by the results, the max-
imum value of pixel discriminates between positive and
negative instances, indicating that the maximum values
are probably causing some high-frequency components
in the SIJ ROIs.
For the Wrapper method using 10 folds, kNN with

k = 5 reached the highest performance with 9 features.
The Wrapper method provides a classifier-based list of
relevant features, which are the standard deviation of 6°
directionality of Tamura (relevant on 2 folds), standard
deviation of 13° directionality of Tamura (relevant on 3
folds), mean of Tamura correlation (relevant on 4 folds),
mean of maximum correlation coefficient of Haralick
(relevant on 2 folds), mean of the maximum pixel value
(relevant on 2 folds), mean of skewness of the Fourier
power spectrum (relevant on 3 folds), mean of Haar
wavelet from LL on level 2 (relevant on 2 folds), mean of
Haar wavelet of LH on level 2 (relevant on 8 folds), and
mean of fractal dimension (relevant on 2 folds).
Again, the maximum pixel value and Haar wavelet

from LH on level 2 were selected as relevant, implying
that these features are, in fact, discriminative. High-
frequency components are caused by large changes in

Table 1 Best performance for each classifier and number of
features used to yield the same result. SVM = Support Vector
Machine; MLP = Multilayer Perceptron; Instance-Based Algorithm
(IBA) derived from k-nearest neighbors (IBk) (k = 1, k = 3, k = 5);
AUC = Area under the ROC curve

Classifier Metric name Metric value Number of features

SVM AUC 0.867 2

Sensitivity 0.850 2

Specificity 0.960 1

IBk with k = 1 AUC 0.900 6

Sensitivity 0.850 6

Specificity 0.923 6

IBk with k = 3 AUC 0.932 5

Sensitivity 0.850 3

Specificity 1.000 24

IBk with k = 5 AUC 0.915 2

Sensitivity 0.800 5

Specificity 1.000 17

MLP AUC 0.926 158

Sensitivity 0.85 150

Specificity 0.923 16

Table 2 - Performance of each classifier using the features selected by the wrapper method. SVM = Support Vector Machine; MLP =
Multilayer Perceptron; Instance-Based Algorithm (IBA) derived from k-nearest neighbors (IBk) (k = 1, k = 3, k = 5); AUC = Area under
the ROC curve

Classifier AUC Sensitivity Specificity Accuracy (%) Number of Features

SVM 0.842 0.800 0.885 87.8 15

IBk with k = 1 0.798 0.800 0.769 78.2 13

IBk with k = 3 0.867 0.750 0.885 82.6 14

IBk with k = 5 0.969 0.750 0.962 86.9 9

MLP 0.965 1.000 0.923 95.6 6
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gray levels across small distances in the image. However,
not all frequency features were selected, which is prob-
ably due to correlation between those features, a charac-
teristic that is detected by the Wrapper method.
The classifier that reached the highest AUC, kNN, has

a performance problem in prediction because it always
needs to calculate the distance between the predicted in-
stance and all other instances, which is not scalable. If
scalability is important, the MLP may be the better
choice of classifier using the Wrapper method. The fea-
tures selected by the MLP are the mean of the 1° direc-
tionality of Tamura (relevant on 2 folds), standard
deviation of the 13° directionality of Tamura (relevant
on 2 folds), mean of sum variance from the gray levels
(relevant on 4 folds), mean of maximum pixel value
(relevant on 2 folds), mean of second Gabor directional-
ity (relevant on 5 folds), and mean of Haar wavelet from
LH on level 2 (relevant on 10 folds).
An important observation is that, always, the max-

imum pixel value and Haar wavelet from LH on level 2
were selected as relevant by both feature selection
methods, asserting that these features are important to
discriminate instances. The maximum pixel value is in-
tuitive to be important because inflammation manifests
as high-intensity of gray level around the SIJ. Gabor dir-
ectionality measures are probably selected due to the
directionality change caused by the depth of inflamma-
tion in SIJ.
We have used the STIR sequence in the coronal plane

to apply the machine learning methods, but in clinical
practice, radiologists may have access to other fluid-
sensitive fat-saturated MRI sequences with images ac-
quired also in the axial and sagittal planes. We chose to
use the STIR sequence because this is one of the recom-
mended sequences by the ASAS guidelines [3]. Recently,
two different studies have shown that other fluid-
sensitive fat-saturated MRI techniques may be equally
sensitive and accurate in the diagnosis of inflammatory
sacroiliitis [31, 32]. Therefore, it could be interesting to
investigate in the future if different fluid-sensitive fat-
saturated MRI techniques could provide and support
similar results using the machine learning approach. We
also encourage future studies exploring the potential of
radiomics [33, 34] in the evaluation of inflammatory
sacroiliitis, with the potential impact of deriving new
diagnostic and prognostic information.

We did not investigate the potential of artificial
intelligence techniques to identify postinflammatory
structural damage on the SIJ surface and subchondral
bone, because the aim was to classify active inflamma-
tion. However, the identification of such abnormalities
may be important for the diagnosis of SpA and future
studies should use T1-weighted sequences for this as-
sessment, since these sequences provide a greater con-
spicuity of such findings.
As expected, in the external validation test the accur-

acy fell down from 95.6 to 80.0 and specificity from
0.923 to 0.667 (Table 3). We believe that our results are
still encouraging, and we suggest new studies to improve
AI techniques to investigate inflammatory sacroiliitis
and SpA.
Some limitations of this study need mentioning. First,

the study was retrospective. In addition, the number of
patients was relatively small, which usually precludes the
use of deep learning methods [35]. We used the segmen-
tation performed by only one musculoskeletal radiologist
as the ground truth, but even experienced specialists
may show interpersonal variability, and the inclusion of
more radiologists would be desirable to validate future
artificial intelligence algorithms. Besides, to use the
methods described in our study, it is necessary that a
musculoskeletal radiologist or an experienced rheuma-
tologist choose the most representative images of the
synovial SIJ region on the coronal plane. The develop-
ment of a semiautomatic or automatic segmentation tool
would be desirable to obviate this workload. Finally, al-
though the database was divided into training and test-
ing sets, which made it possible to make an independent
evaluation of the generalization of the validated classifier
model obtained during the training phase (10-fold cross-
validation), our study enrolled cases from only one insti-
tution. Future validation with cases from another institu-
tion is required before one can generalize our results for
potential clinical application.

Conclusion
Our results show the potential of machine learning
methods to identify SIJ subchondral bone marrow
edema in axSpA patients and are promising to aid in the
detection of active inflammatory sacroiliitis on MRI
STIR sequences. Multilayer Perceptron (MLP) achieved
the best results.

Table 3 - Multilayer perceptron (MLP) classifier selected model performance using 10-fold cross-validation on training samples (46
samples) and external validation on test set (10 samples)

10-Fold Test set

Model Sensitivity Specificity Accuracy (%) Sensitivity Specificity Accuracy (%)

MLP 1 0.923 95.6% 1 0.667 80%
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